Меню Рубрики

Законы эйнштейна теория относительности. Так был ли прав Эйнштейн? Проверяем теорию относительности. Дальнейшее развитие теории

Введение

2. Общая теория относительности Эйнштейна

Заключение

Список использованных источников


Введение

Еще в конце XIX века большинство ученых склонялось к точке зрения, что физическая картина мира в основном построена и останется в дальнейшем незыблемой - предстоит уточнять лишь детали. Но в первые десятилетия ХХ века физические воззрения изменились коренным образом. Это было следствием «каскада» научных открытий, сделанных в течение чрезвычайно короткого исторического периода, охватывающего последние годы ХIХ столетия и первые десятилетия ХХ, многие из которых совершенно не укладывались в представление обыденного человеческого опыта. Ярким примером может служить теория относительности, созданная Альбертом Эйнштейном (1879-1955).

Впервые принцип относительности был установлен Галилеем, но окончательную формулировку получил лишь в механике Ньютона.

Принцип относительности означает, что во всех инерциальных системах все механические процессы происходят одинаковым образом.

Когда в естествознании господствовала механистическая картина мира, принцип относительности не подвергался никакому сомнению. Положение резко изменилось, когда физики вплотную приступили к изучению электрических, магнитных и оптических явлений. Для физиков стала очевидной недостаточность классической механики для описания явлений природы. Возник вопрос: выполняется ли принцип относительности и для электромагнитных явлений?

Описывая ход своих рассуждений, Альберт Эйнштейн указывает на два аргумента, которые свидетельствовали в пользу всеобщности принципа относительности:

Этот принцип с большой точностью выполняется в механике, и поэтому можно надеяться, что он окажется правильным и в электродинамике.

Если инерциальные системы неравноценны для описания явлений природы, то разумно предположить, что законы природы проще всего описываются лишь в одной инерциальной системе.

Например, рассматривается движение Земли вокруг Солнца со скоростью 30 километров в секунду. Если бы принцип относительности в данном случае не выполнялся, то законы движения тел зависели бы от направления и пространственной ориентировки Земли. Ничего подобного, т.е. физической неравноценности различных направлений, не обнаружено. Однако здесь возникает кажущаяся несовместимость принципа относительности с хорошо установленным принципом постоянства скорости света в пустоте (300 000 км/с).

Возникает дилемма: отказ либо от принципа постоянства скорости света, либо от принципа относительности. Первый принцип установлен настолько точно и однозначно, что отказ от него был бы явно неоправданным; не меньшие трудности возникают и при отрицании принципа относительности в области электромагнитных процессов. В действительности, как показал Эйнштейн:

«Закон распространения света и принцип относительности совместимы».

Кажущееся противоречие принципа относительности закону постоянства скорости света возникает потому, что классическая механика, по заявлению Эйнштейна, опиралась «на две ничем не оправданные гипотезы»: промежуток времени между двумя событиями не зависит от состояния движения тела отсчета и пространственное расстояние между двумя точками твердого тела не зависит от состояния движения тела отсчета. В ходе разработки своей теории ему пришлось отказаться: от галилеевских преобразований и принять преобразования Лоренца; от ньютоновского понятия абсолютного пространства и определения движения тела относительно этого абсолютного пространства.

Каждое движение тела происходит относительно определенного тела отсчета и поэтому все физические процессы и законы должны формулироваться по отношению к точно указанной системе отсчета или координат. Следовательно, не существует никакого абсолютного расстояния, длины или протяженности, так же как не может быть никакого абсолютного времени.

Новые понятия и принципы теории относительности существенно изменили физические и общенаучные представления о пространстве, времени и движении, которые господствовали в науке более двухсот лет.

Все вышесказанное обосновывает актуальность выбранной темы.

Цель данной работы всестороннее изучение и анализ создания специальной и общей теорий относительности Альбертом Эйнштейном.

Работа состоит из введения, двух частей, заключения и списка использованной литературы. Общий объем работы 16 страниц.

1. Специальная теория относительности Эйнштейна

В 1905 году Альберт Эйнштейн, исходя из невозможности обнаружить абсолютное движение, сделал вывод о равноправии всех инерциальных систем отсчета. Он сформулировал два важнейших постулата, которые составили основу новой теории пространства и времени, получившей название Специальной Теории Относительности (СТО):

1. Принцип относительности Эйнштейна - этот принцип явился обобщением принципа относительности Галилея на любые физические явления. Он гласит: все физические процессы при одних и тех же условиях в инерциальных систем отсчета (ИСО) протекают одинаково. Это означает, что никакими физическими опытами, проведенными внутри замкнутой ИСО, нельзя установить, покоится ли она или движется равномерно и прямолинейно. Таким образом, все ИСО совершенно равноправны, а физические законы инвариантны по отношению к выбору ИСО (т.е. уравнения, выражающие эти законы, имеют одинаковую форму во всех инерциальных системах отсчета).

2. Принцип постоянства скорости света - скорость света в вакууме постоянна и не зависит от движения источника и приемника света. Она одинакова во всех направлениях и во всех инерциальных системах отсчета. Скорость света в вакууме - предельная скорость в природе - это одна из важнейших физических постоянных, так называемых мировых констант.

Глубокий анализ этих постулатов показывает, что они противоречат представлениям о пространстве и времени, принятым в механике Ньютона и отраженным в преобразованиях Галилея. Действительно, согласно принципу 1 все законы природы, в том числе законы механики и электродинамики, должны быть инвариантны по отношению к одним и тем же преобразованиям координат и времени, осуществляемым при переходе от одной системы отсчета к другой. Уравнения Ньютона этому требованию удовлетворяют, а вот уравнения электродинамики Максвелла – нет, т.е. оказываются не инвариантными. Это обстоятельство привело Эйнштейна к выводу о том, что уравнения Ньютона нуждаются в уточнении, в результате которого как уравнения механики, так и уравнения электродинамики оказались бы инвариантными по отношению к одним и тем же преобразованиям. Необходимое видоизменение законов механики и было осуществлено Эйнштейном. В результате возникла механика, согласующаяся с принципом относительности Эйнштейна – релятивистская механика.

Создатель теории относительности сформулировал обобщенный принцип относительности, который теперь распространяется и на электромагнитные явления, в том числе и на движение света. Этот принцип гласит, что никакими физическими опытами (механическими, электромагнитными и др.), производимыми внутри данной системы отсчета, нельзя установить различие между состояниями покоя и равномерного прямолинейного движения. Классическое сложение скоростей неприменимо для распространения электромагнитных волн, света. Для всех физических процессов скорость света обладает свойством бесконечной скорости. Для того чтобы сообщить телу скорость, равную скорости света, требуется бесконечное количество энергии, и именно поэтому физически невозможно, чтобы какое-нибудь тело достигло этой скорости. Этот результат был подтвержден измерениями, которые проводились над электронами. Кинетическая энергия точечной массы растет быстрее, нежели квадрат ее скорости, и становится бесконечной для скорости, равной скорости света.

Скорость света является предельной скоростью распространения материальных воздействий. Она не может складываться ни с какой скоростью и для всех инерциальных систем оказывается постоянной. Все движущиеся тела на Земле по отношению к скорости света имеют скорость, равную нулю. И в самом деле, скорость звука всего лишь 340 м/с. Это неподвижность по сравнению со скоростью света.

Из этих двух принципов - постоянства скорости света и расширенного принципа относительности Галилея - математически следуют все положения специальной теории относительности. Если скорость света постоянна для всех инерциальных систем, а они все равноправны, то физические величины длины тела, промежутка времени, массы для разных систем отсчета будут различными. Так, длина тела в движущейся системе будет наименьшей по отношению к покоящейся. По формуле:

где /" - длина тела в движущейся системе со скоростью V по отношению к неподвижной системе; / - длина тела в покоящейся системе.

Для промежутка же времени, длительности какого-либо процесса - наоборот. Время будет как бы растягиваться, течь медленнее в движущейся системе по отношению к неподвижной, в которой этот процесс будет более быстрым. По формуле:


Напомним, что эффекты специальной теории относительности будут обнаруживаться при скоростях, близких к световым. При скоростях значительно меньше скорости света формулы СТО переходят в формулы классической механики.

Рис.1. Эксперимент «Поезд Эйнштейна»

Эйнштейн попытался наглядно показать, как происходит замедление течения времени в движущейся системе по отношению к неподвижной. Представим себе железнодорожную платформу, мимо которой проходит поезд со скоростью, близкой к скорости света (рис.1).

Альберт Эйнштейн. Правдивая история одного еврея

Эйнштейн. А что из себя вообще представляет Эйнштейн? Кто он такой? Есть очень интересная книга В. И. Бояринцева , "Русские и еврейские учёные, мифы и реальность", вышедшая мизерным тиражом, где автор, сам доктор физико-математических наук , внимательно приглядывается к Эйнштейну.

Итак, в детстве Эйнштейн долго учился говорить, в семилетнем возрасте мог лишь повторять короткие фразы. В девять лет Эйнштейн поступил в гимназию и без блеска справлялся со школьной программой. Преподаватели с трудом терпели медлительность его ответов.

Закончить гимназию ему не удалось . Предварительно Эйнштейн получил справку от психиатра о необходимости полугодового отпуска. Но учителя первые поздравили его с воскресением. И прочитали ему приказ об отчислении Эйнштейна (за год до окончания). Но Эйнштейн закончил другую гимназию.

Осенью 1900 года Эйнштейн сдал экзамены в цюрихский Политехникум. Он был серым и неприметным учеником. Отметки Эйнштейна были таковы: дипломная работа – 3,75, общий балл – 4,09 (по пятибальной системе). В Политехникум "гений" Эйнштейн смог поступить только со второй попытки. Лекции таких выдающихся математиков, как Адольф Гурвиц и Герман Минковский его не интересовали. Эйнштейна не видели на лекциях, а экзамены он вообще сдавал с помощью своего приятеля Гроссмана.

После окончания Политехникума Эйнштейн 2 года нигде не работает. Только в течении двух месяцев он преподавал математику в технической школе. Попытки давать частные уроки успеха не имели – подопечных не устраивало его преподавание.

Докторская (кандидатская по российским понятиям) диссертация Эйнштейна "Новое определение размера молекул", посвящённая броуновскому (безпорядочному) движению была признана ошибочной .

Стоит отметить ещё один любопытный факт. К началу 50-х годов биографы умилённо рассказывают, что он освоил английский язык. Воистину безграничный талант! От себя заметим, что к началу 50-х годов Эйнштейн прожил в США "всего-то" 17 лет .

В 1902 году Эйнштейн переселился в Берн и начал работать в патентном бюро (техническим экспертом третьего класса). Он получал массу свежей информации в области науки и спокойно мог с ней работать и пользоваться знаниями других учёных. Было бы желание посмотреть, что и где плохо лежит, а своровать и присвоить себе – дело нехитрое. Студенческие деньки даром для Эйнштейна не пропали: они выработали у него хватку и умение присваивать себе чужие результаты . Особенно в тех случаях, когда нужно было сваливать на других черновую и трудоёмкую работу, которую сам Эйнштейн по причине слабоумия выполнять не мог.

В 1905 году Эйнштейн создал свою специальную теорию относительности (СТО). Но создал он её не с нуля. Изложение материала было без указания идей и результатов, заимствованных из других исследований, без сопоставления полученных результатов с более ранними. Статья не содержала ни одной литературной ссылки. Базовые идеи Эйнштейн взял у Анри Пуанкаре , а математический аппарат заимствовал у Гендрика Лоренца . В научном мире это называется воровством чужих идей, плагиатом .

Ещё одна интересная деталь: не осталось никаких черновиков первых работ Эйнштейна.

После опубликования СТО Пуанкаре однажды встретил Эйнштейна и обвинил его в плагиате и научной непорядочности . Наивный и честный Пуанкаре. Он не знал, что евреи собственность гоя (в том числе и интеллектуальную) считают своей личной собственностью. "Имущество гоя – все равно, что пустыня свободная " (талмуд, Баба Батра, 55). Украсть чужое и выдать за своё – это вершина еврейской гениальности.

Самого же Эйнштейна все время пытаются представить атеистом. Особенно, материалисты. На самом же деле Эйнштейн был верующим иудеем. "Принадлежность к еврейской нации есть дар божий" – его же слова (Г. Себов, "Финал катастрофы", стр. 25). Странные речи для атеиста, каким это всегда пытается сделать пропаганда. И тем более для интернационалиста, каким его пытаются сделать евреи.

После Эйнштейна все патентные бюро мира забиты евреями . Патентные бюро стали воровскими еврейскими притонами по краже идей "низших народов" и выдаче их за свои. Такова еврейская гениальность. Точнее, – наглость. В частности, в советское время во ВНИИГПЭ (Всесоюзный институт государственной экспертизы) не было ни одного работника, хотя бы внешне похоже на русского. "Профессор открывает дверь конференцзала и восклицает: а, преЖИДиум уже собрался". При этом наиболее перспективные предложения становились известными в США и в Израиле . А самим заявителям через полгода-год говорили о безперспективности их предложений, предварительно их украв.

Роль первой славянской жены Эйнштейна – Милевы Марич (сербка по национальности) полностью замалчивается. Однако Милева была сильным физиком и её роль в создании специальной и общей теории относительности достаточно ощутима. Милева Марич в физике была намного умнее Эйнштейна. Все три "эпохальные" статьи Эйнштейна 1905 года были подписаны "Эйнштейн-Марич". Широко известно, что Эйнштейн говорил своим друзьям: "математическую часть работы за меня делает жена " (это относилось только к первым статьям, потом её стали делать помощники Эйнштейна). По целому ряду биографий Эйнштейна проходит издевательское отношение к роли Марич, которая была великолепной домохозяйкой и ученой женщиной: "27-летняя супруга меньше всего служила образцом швейцарской феи домашнего очага, вершиной честолюбия которой является сражение с пылью, молью сором". Мамочка Эйнштейна называла Милеву "скорее грязнюшкой, нежели чистюлей". Правда сам Эйнштейн называл себя "цыганом и бродягой" и не придавал никакого значения своему внешнему виду. Бытовой проблемой Эйнштейна были блохи, которых он занёс с покупкой старого матраса. Сам Эйнштейн шутил: "Чем грязнее нация, тем она выносливее" (видимо, имея в виду себя). С другой стороны Эйнштейн "не мог терпеть пражскую грязь". Кстати, все биографы Эйнштейна отмечают его крайнюю неряшливость и неопрятность гения всех времён и одного народца.

Общую теорию относительности (ОТО) "гений" Эйнштейн "создал" в 1915 году. Естественно, не с нуля, а на базе фундаментальной теории поляка Минковского о 4-х мерном пространстве-времени. Сам Минковский развил идею 4-х мерного пространства Пуанкаре . Фундаментальную формулу Е=mС 2 придумал не Эйнштейн, а Пуанкаре в 1900 году. Он первый заметил, что энергия излучения обладает массой m, равной E/C 2 . А это уравнение приписывается Эйнштейну. Так что в фундаменте даже самых крупных еврейских "гениев" лежит плагиат и наглое воровство.

Место в Бернском патентном бюро в 1902 году Эйнштейн получил благодаря отцу Марсела Гроссмана , у которого был друг – Фридрих Галлер – директор этого бюро.

В 1909 году в Цюрихском университете открылась профессорская вакансия по курсу теоретической физики. На неёе претендовал Фридрих Адлер, учившийся с Эйнштейном в Политехникуме. Адлер отказался от должности в пользу Эйнштейна . Аналогичное место имела история в 1910 году, когда Эйнштейн претендовал на должность профессора Пражского университета. Здесь первым кандидатом был профессор физики Густав Яуманн, который снял свою кандидатуру в пользу Эйнштейна.

С 1910 года сионисты пробивали Эйнштейну Нобелевскую премию. Его имя только два раза не фигурировало в списках кандидатов. С таким упорством продвигали сионистские круги своего кандидата в гении всех времён и одного народца. После многолетней работы Сиона Нобелевская премия была в итоге присуждена Эйнштейну. В июле 1923 года Эйнштейн выехал в Швецию для получения "Шнобелевской" премии.

А вот нечто забавное. Спросите любого "за что Эйнштейну была присуждена Нобелевская премия? ". Примерный ответ будет таков: "за создание теории относительности". Вот и не угадали! Как на самом деле? При всем давлении сионистов Нобелевский комитет отличался консервативностью и не хотел присуждать премию за такую фальсификацию. За развитие чужой гипотезы премию давать Нобелевская комиссия по совести не хотела. 12 лет подряд Нобелевский комитет не хотел присуждать премию за теорию относительности . Присуждение премии было сформулировано так: "Премия присуждается Эйнштейну за открытие закона фотоэлектрического эффекта и за его работы в области теоретической физики ". Занятная формулировочка, не правда ли? А как реально обстояло дело?

А вот так. Сам фотоэлектрический эффект был открыт в 1886 году немцем Генрихом Герцем . Два года спустя, так называемый "внешний фотоэффект" был экспериментально проверен русским физиком Александром Григорьевичем Столетовым , который установил первый закон фотоэффекта (кстати, не называемый "законом Столетова").

Первый закон фотоэффекта звучит так: "максимальный ток насыщения прямо пропорционален падающему лучистому потоку". Столетов скрупулёзно изучал различные стороны фотоэффекта, проводил серию опытов с целью получения зависимости величины фототока от освещения . В своих опытах учёный вплотную подошёл к установлению законов электрических разрядов в газах. Теорию таких явлений построил английский физик Таунсенд , использовав полученные Столетовым результаты. Но Столетову премию не дали, её дали Эйнштейну, который ничем её не заслужил.

А что вообще сделал Эйнштейн? "Великий" еврейский "гений" установил "второй закон фотоэффекта" – "закон Эйнштейна". Он звучит так: "Максимальная энергия фотоэлектронов линейно зависит от частоты падающего света и не зависит от его интенсивности". Вот и все. Таково "эпохальное" содержание "великой еврейской гениальности". Мало того, Эйнштейну также приписывается разъяснение механизма фотоэффекта на основе квантовых представлений о природе света. А на самом деле? Квантовая теория излучения была создана Максом Планком в 1900 году.

Все нападки научного мира на бредовую теорию относительности слабоумного Эйнштейна так же рассматривались, как проявление антисемитизма. С самими противниками теории Эйнштейна поступали круто: одного из них решили обследовать психиатрически, на другого предоставили документы в гестапо по причине якобы еврейского происхождения оппонента Эйнштейна. И это у жидов называется "научным спором".

В 1912 году русский физик Н. А. Умов (1846-1915 гг) опубликовал статью, которой забивал гвоздь в крышку гроба теории относительности. Все материальные изменения (сокращение длины, замедление времени) – всё это лишь кажется наблюдателю, до которого доходят световые волны от обьекта. И никак это не относится к физическому обьекту. Преобразования Лоренца имеют чисто математический характер. И к физической реальности отношения не имеют.

Эта статья была опубликована в немецком журнале "Zeitschrift fuer Physik" на немецком языке. Весь юмор в том, что одесский сборник "Теория Относительности" тут же перепечатывает эту статью, ошибочно приняв фамилию автора – Umow – за немецкую. А самого автора – за сторонника теории относительности. Не узнать фамилии этого физика (кто из студентов технических ВУЗов не знает о "векторе Умова"?), не разобраться в содержании статьи – это надо уметь! Это говорит о многом. Это говорит прежде всего о дремучести и полной некомпетентности сторонников теории Эйнштейна. И ещё это говорит об их неразборчивости в достижении своей цели – "пропихивании" "гениального" Эйнштейна. Ворон к ворону летит.

Кстати, интересная деталь. Берём русского физика А. Г. Столетова. Президент академии наук Великий князь Константин не допускает кандидатуру Столетова до баллотировки в члены Академии, объясняя своё решение "невозможным характером " претендента. Но никто не вопил о русофобии или об ущемлении прав русского (и по праву талантливого) физика. Представьте себе, что такое произошло бы с худоумным Эйнштейном или с каким-нибудь другим евреем. Представляете, если бы какого-нибудь еврея не пустить в члены какой-нибудь академии, объясняя это "невозможным характером" кандидата? Это мгновенно будет рассмотрено как оголтелый пещерный антисемитизм. Вою будет на весь мир!

Эйнштейна евреи расписывают как ярого интернационалиста. С одной стороны Эйнштейн писал: "…отвратительный дух национализма, как я ненавижу это". Это-то он писал. А на деле как? Однажды польский еврей Леопольд Инфельд обратился за помощью к Эйнштейну для поступления в прусское министерство просвещения. Эйнштейн ответил: "Я охотно написал бы вам рекомендательное письмо, но там одни антисемиты. То, что вы физик упрощает дело. Я напишу несколько слов профессору Планку, его рекомендации значат больше, чем моя". "Он сделал это, не зная, имею ли я хоть какое-нибудь представление о физике " – удивлённо пишет Инфельд. Это, конечно, яркий пример борьбы за чистоту науки интернационалиста Эйнштейна.

Отсюда весьма удивителен (хотя нет, неудивителен) факт – все аспиранты и ассистенты Эйнштейна как в Германии , так и в США, были евреи, что составляет для неведающего человека загадку при его интернациональном духе. Хотя на самом деле ничего странного тут нет. Евреи – интернационалисты особого рода. Из числа претендентов на Нобелевские премии, выдвинутых Эйнштейном, 70% были из числа его земляков-евреев, 25% были интернационалисты-пацифисты и 5% составляли прочие.

Весьма характерно, что Эйнштейн поддерживал гомосексуалистов и поставил свою подпись за отмену закона против содомитов. Как сообщил Давид Гринберг, Эйнштейн и писатель-полуеврей Томас Манн под руководством еврея Магнуса Хиршфельда подписали гуманитарную петицию в Рейхстаг (немецкий парламент) в их защиту.

В зените своей славы, когда Эйнштейна подняли на небеса, он сделал свой характерный снимок.

Эйнштейн снялся с идиотской рожей и высунутым до подбородка языком. Этот снимок просто неприличен для любого нормального человека . Кроме Эйнштейна никто из учёных не фотографировался в таком идиотском виде. Нормальный человек, а тем более учёный, свой язык показывать никогда не будет и с такой идиотской рожей сниматься просто постесняется из чувства приличия. Люди не уставали удивляться чудачеству "гения". Этот снимок обошёл весь мир , и сам Эйнштейн его активно рекламировал. Многие ломали и ломают головы: "а в чем суть?". Очень просто. Суть в том, что Эйнштейн показывает свой язык всему человечеству, включая научный мир. Этим снимком он говорит: "как я вас всех сделал, а!?". У жидов наглость – это доблесть. А демонстрация наглости – это величайшая жидовская доблесть. Шут гороховый. Его надо было бы наградить погремушкой. Шуты потому и гороховые, что у них в руках были погремушки с сухими горошинами внутри. Вот и Эйнштейну надо было бы подарить такую погремушку, в другую руку дать ему глобус земного шара с натянутым на него колпаком дурака, на шею повесить медаль "За аферу в физике" и снять на фотоаппарат . И вот только после этого рекламировать. Посмотрите на этот снимок внимательно 10-15 секунд. Легче будет понять всю суть открытий еврейского "гения".

Скорость света, Эйнштейн, теория, факты, Теория струн, математическая модель (Левашов Н.В.)

Почему сегодняшняя Академия Наук не хочет заниматься наукой?

Почему наша наука находится в таком плачевном состоянии?

Более подробную и разнообразную информацию о событиях, происходящих в России, на Украине и в других странах нашей прекрасной планеты, можно получить на Интернет-Конференциях , постоянно проводящихся на сайте «Ключи познания» . Все Конференции – открытые и совершенно безплатные . Приглашаем всех просыпающихся и интересующихся…

Общая теория относительности наряду со специальной теорией относительности - гениальный труд Альберта Эйнштейна, который в начале 20 века перевернул взгляд физиков на мир. Спустя сто лет ОТО является основной и важнейшей теорией физики в мире, и вместе с квантовой механикой претендует на один из двух краеугольных камней «теории всего». Общая теория относительности описывает гравитацию как следствие искривления пространства-времени (объединенного в ОТО в одно целое) под действием массы. Благодаря ОТО ученые вывели множество констант, проверили кучу необъяснимых явлений и придумали такие вещи, как черные дыры, темная материя и темная энергия, расширение Вселенной, Большой Взрыв и многое другое. Также ОТО наложила вето на превышение скорости света, тем самым буквально заточив нас в наших окрестностях (Солнечной системы), но оставила лазейку в виде червоточин - коротких возможных путей через пространство-время.

Специальная теория относительности, перевернувшая в начале прошлого столетия общепринятые представления о мире, до сих пор продолжает будоражить умы и сердца людей. Сегодня мы попытаемся разобраться вместе, что это такое.

В 1905 году Альберт Эйнштейн опубликовал специальную теорию относительности (СТО), которая объясняла, как интерпретировать движения между различными инерциальными системами отсчета – попросту говоря, объектами, которые движутся с постоянной скоростью по отношению друг к другу.

Эйнштейн объяснил, что когда два объекта двигаются с постоянной скоростью, следует рассматривать их движение друг относительно друга, вместо того чтобы принять один из них в качестве абсолютной системы отсчета.

Так что, если два космонавта, вы и, допустим, Герман, летите на двух космических кораблях и хотите сравнить ваши наблюдения, единственное, что вам нужно знать – это ваша скорость относительно друг друга.

Специальная теория относительности рассматривает лишь один специальный случай (отсюда и название), когда движение прямолинейно и равномерно. Если материальное тело ускоряется или сворачивает в сторону, законы СТО уже не действуют. Тогда в силу вступает общая теория относительности (ОТО), которая объясняет движения материальных тел в общем случае.

Теория Эйнштейна базируется на двух основных принципах:

1. Принцип относительности: физические законы сохраняются даже для тел, являющихся инерциальными системами отсчета, т. е. двигающимися на постоянной скорости относительно друг друга.

2. Принцип скорости света: скорость света остается неизменной для всех наблюдателей, независимо от их скорости по отношению к источнику света. (Физики обозначают скорость света буквой с).

Одна из причин успеха Альберта Эйнштейна состоит в том, что он ставил экспериментальные данные выше теоретических. Когда в ряде экспериментов обнаружились результаты, противоречащие общепринятой теории, многие физики решили, что эти эксперименты ошибочны.

Альберт Эйнштейн был одним из первых, кто решил построить новую теорию на базе новых экспериментальных данных.

В конце 19 века физики находились в поиске таинственного эфира – среды, в которой по общепринятым предположениям должны были распространяться световые волны, подобно акустическим, для распространения которых необходим воздух, или же другая среда – твердая, жидкая или газообразная. Вера в существование эфира привела к убеждению, что скорость света должна меняться в зависимости от скорости наблюдателя по отношению к эфиру.

Альберт Эйнштейн отказался от понятия эфира и предположил, что все физические законы, включая скорость света, остаются неизменными независимо от скорости наблюдателя – как это и показывали эксперименты.

Однородность пространства и времени

В СТО Эйнштейна постулируется фундаментальная связь между пространством и временем. Материальная Вселенная, как известно, имеет три пространственных измерения: вверх-вниз, направо-налево и вперед-назад. К нему добавляется еще одно измерение – временное. Вместе эти четыре измерения составляют пространственно-временной континуум.

Если вы двигаетесь с большой скоростью, ваши наблюдения относительно пространства и времени будут отличаться от наблюдений других людей, движущихся с меньшей скоростью.

На картинке ниже представлен мысленный эксперимент, который поможет понять эту идею. Представьте себе, что вы находитесь на космическом корабле, в руках у вас лазер, с помощью которого вы посылаете лучи света в потолок, на котором закреплено зеркало. Свет, отражаясь, падает на детектор, который их регистрирует.

Сверху – вы послали луч света в потолок, он отразился и вертикально упал на детектор. Снизу – для Германа ваш луч света двигается по диагонали к потолку, а затем – по диагонали к детектору

Допустим, ваш корабль двигается с постоянной скоростью, равной половине скорости света (0.5c). Согласно СТО Эйнштейна, для вас это не имеет значения, вы даже не замечаете своего движения.

Однако Герман, наблюдающий за вами с покоящегося звездолета, увидит совершенно другую картину. С его точки зрения, луч света пройдет по диагонали к зеркалу на потолке, отразится от него и по диагонали упадет на детектор.

Другими словами, траектория луча света для вас и для Германа будет выглядеть по-разному и длина его будет различной. А стало быть и длительность времени, которое требуется лазерному лучу для прохождения расстояния к зеркалу и к детектору, будет вам казаться различным.

Это явление называется замедлением времени: время на звездолете, движущимся с большой скоростью, с точки зрения наблюдателя на Земле течет значительно медленнее.

Этот пример, равно как и множество других, наглядно демонстрирует неразрывную связь между пространством и временем. Эта связь явно проявляется для наблюдателя, только когда речь идет о больших скоростях, близких к скорости света.

Эксперименты, проведенные со времени публикации Эйнштейном своей великой теории, подтвердили, что пространство и время действительно воспринимаются по-разному в зависимости от скорости движения объектов.

Объединение массы и энергии

Согласно теории великого физика, когда скорость материального тела увеличивается, приближаясь к скорости света, увеличивается и его масса. Т.е. чем быстрее движется объект, тем тяжелее он становится. В случае достижения скорости света, масса тела, равно как и его энергия, становятся бесконечными. Чем тяжелее тело, тем сложнее увеличить его скорость; для ускорения тела с бесконечной массой требуется бесконечное количество энергии, поэтому для материальных объектов достичь скорости света невозможно.

До Эйнштейна концепции массы и энергии в физике рассматривались по отдельности. Гениальный ученый доказал, что закон сохранения массы, как и закон сохранения энергии, являются частями более общего закона массы-энергии.

Благодаря фундаментальной связи между этими двумя понятиями, материю можно превратить в энергию, и наоборот – энергию в материю.

СТО, также известная как частная теория относительности является проработанной описательной моделью для отношений пространства-времени, движения и законов механики, созданная в 1905 году лауреатом Нобелевской премии Альбертом Эйнштейном.

Поступая на отделение теоретической физики Мюнхенского университета, Макс Планк обратился за советом к профессору Филиппу фон Жолли, руководившему в тот момент кафедрой математики этого университета. На что он получил совет: «в этой области почти всё уже открыто, и всё, что остаётся – заделать некоторые не очень важные проблемы». Юный Планк ответил, что он не хочет открывать новые вещи, а только хочет понять и систематизировать уже известные знания. В итоге из одной такой «не очень важной проблемы» впоследствии возникла квантовая теория, а из другой – теория относительности, за которые Макс Планк и Альберт Эйнштейн получили нобелевские премии по физике.

В отличие от многих других теорий, полагавшихся на физические эксперименты, теория Эйнштейна практически полностью была основана на его мысленных экспериментах и только впоследствии была подтверждена на практике. Так ещё в 1895 году (в возрасте всего 16 лет) он задумался о том, что будет, если двигаться параллельно лучу света с его скоростью? В такой ситуации получалось, что для стороннего наблюдателя частицы света должны были колебаться вокруг одной точки, что противоречило уравнениям Максвелла и принципу относительности (который гласил, что физические законы не зависят от места где вы находитесь и скорости с которой вы движетесь). Таким образом юный Эйнштейн пришёл к выводу, что скорость света должна быть недостижима для материального тела, а в основу будущей теории был заложен первый кирпичик.

Следующий эксперимент был проведён им в 1905 году и заключался в том, что на концах движущегося поезда находятся два импульсных источника света которые зажигаются в одно время. Для стороннего наблюдателя, мимо которого проходит поезд, оба этих события происходят одновременно, однако для наблюдателя, находящегося в центре поезда эти события будут казаться произошедшими в разное время, так как вспышка света из начала вагона придёт раньше, чем из его конца (в следствии постоянности скорости света).

Из этого он сделал весьма смелый и далеко идущий вывод, что одновременность событий является относительной. Полученные на основе этих экспериментов расчёты он опубликовал в работе «Об электродинамике движущихся тел». При этом для движущегося наблюдателя один из этих импульсов будет иметь большую энергию нежели другой. Для того чтобы в такой ситуации не нарушался закон сохранения импульса при переходе от одной инерциальной системы отсчёта к другой необходимо было чтобы объект одновременно с потерей энергии должен был терять и массу. Таким образом Эйнштейн пришёл к формуле характеризующую взаимосвязь массы и энергии E=mc 2 – являющейся, пожалуй, самой известной физической формулой на данный момент. Результаты этого эксперимента были опубликованы им позднее в том же году.

Основные постулаты

Постоянство скорости света – к 1907 году были произведены эксперименты по измерению с точностью ±30 км/с (что было больше орбитальной скорости Земли) не обнаружившие её изменения в ходе года. Это стало первым доказательством неизменности скорости света, которое в последствии было подтверждено множеством других экспериментов, как экспериментаторами на земле, так и автоматическими аппаратами в космосе.

Принцип относительности – этот принцип определяет неизменность физических законов в любой точке пространства и в любой инерциальной системе отсчёта. То есть в независимости от того движетесь ли вы со скоростью около 30 км/с по орбите Солнца вместе с Землёй или в космическом корабле далеко за её пределами – ставя физический эксперимент вы всегда будете приходить к одним и тем же результатам (если ваш корабль в это время не ускоряется или замедляется). Этот принцип подтверждался всеми экспериментами на Земле, и Эйнштейн разумно счёл этот принцип верным и для всей остальной Вселенной.

Следствия

Путём расчётов на основе этих двух постулатов Эйнштейн пришёл к выводу, что время для движущегося в корабле наблюдателя должно замедляться с увеличением скорости, а сам он вместе с кораблём должен сокращаться в размерах в направлении движения (для того чтобы скомпенсировать тем самым эффекты от движения и соблюсти принцип относительности). Из условия конечности скорости для материального тела вытекало также что правило сложения скоростей (имевшее в механике Ньютона простой арифметический вид) должно быть заменено более сложными преобразованиями Лоренца – в таком случае даже если мы сложим две скорости в 99% от скорости света мы получим 99,995% от этой скорости, но не превысим её.

Статус теории

Так как формирование из частной теории её общей версии у Эйнштейна заняло только 11 лет, экспериментов для подтверждения непосредственно СТО не проводилось. Однако в том же году, когда была опубликована Эйнштейн также опубликовал свои расчёты, объяснявшие смещение перигелия Меркурия с точностью до долей процентов, без необходимости введения новых констант и других допущений, которые требовались другим теориям, объяснявшим этот процесс. С тех пор правильность ОТО была подтверждена экспериментально с точностью до 10 -20 , а на её основе было сделано множество открытий, что однозначно доказывает правильность этой теории.

Первенство в открытии

Когда Эйнштейн опубликовал свои первые работы по специальной теории относительности и приступил к написанию её общей версии, другими учёными уже была открыта значительная часть формул и идей, заложенных в основе этой теории. Так скажем преобразования Лоренца в общем виде были впервые получены Пуанкаре в 1900 году (за 5 лет до Эйнштейна) и были названы так в честь Хендрика Лоренца получившего приближённую версию этих преобразований, хотя даже в этой роли его опередил Вольдемар Фогт.